TEKNIK SAMPLING
Sampel adalah sebagian dari populasi. Artinya tidak akan ada sampel jika tidak ada populasi. Populasi adalah keseluruhan elemen atau unsur yang akan kita teliti. Penelitian yang dilakukan atas seluruh elemen dinamakan sensus. Idealnya, agar hasil penelitiannya lebih bisa dipercaya, seorang peneliti harus melakukan sensus. Namun karena sesuatu hal peneliti bisa tidak meneliti keseluruhan elemen tadi, maka yang bisa dilakukannya adalah meneliti sebagian dari keseluruhan elemen atau unsur tadi.
Berbagai alasan yang masuk akal mengapa peneliti tidak melakukan sensus antara lain adalah,(a) populasi demikian banyaknya sehingga dalam prakteknya tidak mungkin seluruh elemen diteliti; (b) keterbatasan waktu penelitian, biaya, dan sumber daya manusia, membuat peneliti harus telah puas jika meneliti sebagian dari elemen penelitian; (c) bahkan kadang, penelitian yang dilakukan terhadap sampel bisa lebih reliabel daripada terhadap populasi – misalnya, karena elemen sedemikian banyaknya maka akan memunculkan kelelahan fisik dan mental para pencacahnya sehingga banyak terjadi kekeliruan. (Uma Sekaran, 1992); (d) demikian pula jika elemen populasi homogen, penelitian terhadap seluruh elemen dalam populasi menjadi tidak masuk akal, misalnya untuk meneliti kualitas jeruk dari satu pohon jeruk
Agar hasil penelitian yang dilakukan terhadap sampel masih tetap bisa dipercaya dalam artian masih bisa mewakili karakteristik populasi, maka cara penarikan sampelnya harus dilakukan secara seksama. Cara pemilihan sampel dikenal dengan nama teknik sampling atau teknik pengambilan sampel .
Populasi atau universe adalah sekelompok orang, kejadian, atau benda, yang dijadikan obyek penelitian. Jika yang ingin diteliti adalah sikap konsumen terhadap satu produk tertentu, maka populasinya adalah seluruh konsumen produk tersebut. Jika yang diteliti adalah laporan keuangan perusahaan “X”, maka populasinya adalah keseluruhan laporan keuangan perusahaan “X” tersebut, Jika yang diteliti adalah motivasi pegawai di departemen “A” maka populasinya adalah seluruh pegawai di departemen “A”. Jika yang diteliti adalah efektivitas gugus kendali mutu (GKM) organisasi “Y”, maka populasinya adalah seluruh GKM organisasi “Y”
Elemen/unsur adalah setiap satuan populasi. Kalau dalam populasi terdapat 30 laporan keuangan, maka setiap laporan keuangan tersebut adalah unsur atau elemen penelitian. Artinya dalam populasi tersebut terdapat 30 elemen penelitian. Jika populasinya adalah pabrik sepatu, dan jumlah pabrik sepatu 500, maka dalam populasi tersebut terdapat 500 elemen penelitian.
Syarat sampel yang baik
Secara umum, sampel yang baik adalah yang dapat mewakili sebanyak mungkin karakteristik populasi. Dalam bahasa pengukuran, artinya sampel harus valid, yaitu bisa mengukur sesuatu yang seharusnya diukur. Kalau yang ingin diukur adalah masyarakat Sunda sedangkan yang dijadikan sampel adalah hanya orang Banten saja, maka sampel tersebut tidak valid, karena tidak mengukur sesuatu yang seharusnya diukur (orang Sunda). Sampel yang valid ditentukan oleh dua pertimbangan.
Pertama : Akurasi atau ketepatan , yaitu tingkat ketidakadaan “bias” (kekeliruan) dalam sample. Dengan kata lain makin sedikit tingkat kekeliruan yang ada dalam sampel, makin akurat sampel tersebut. Tolok ukur adanya “bias” atau kekeliruan adalah populasi.
Cooper dan Emory (1995) menyebutkan bahwa “there is no systematic variance” yang maksudnya adalah tidak ada keragaman pengukuran yang disebabkan karena pengaruh yang diketahui atau tidak diketahui, yang menyebabkan skor cenderung mengarah pada satu titik tertentu. Sebagai contoh, jika ingin mengetahui rata-rata luas tanah suatu perumahan, lalu yang dijadikan sampel adalah rumah yang terletak di setiap sudut jalan, maka hasil atau skor yang diperoleh akan bias. Kekeliruan semacam ini bisa terjadi pada sampel yang diambil secara sistematis
Contoh systematic variance yang banyak ditulis dalam buku-buku metode penelitian adalah jajak-pendapat (polling) yang dilakukan oleh Literary Digest (sebuah majalah yang terbit di Amerika tahun 1920-an) pada tahun 1936. (Copper & Emory, 1995, Nan lin, 1976). Mulai tahun 1920, 1924, 1928, dan tahun 1932 majalah ini berhasil memprediksi siapa yang akan jadi presiden dari calon-calon presiden yang ada. Sampel diambil berdasarkan petunjuk dalam buku telepon dan dari daftar pemilik mobil. Namun pada tahun 1936 prediksinya salah. Berdasarkan jajak pendapat, di antara dua calon presiden (Alfred M. Landon dan Franklin D. Roosevelt), yang akan menang adalah Landon, namun meleset karena ternyata Roosevelt yang terpilih menjadi presiden Amerika.
Setelah diperiksa secara seksama, ternyata Literary Digest membuat kesalahan dalam menentukan sampel penelitiannya . Karena semua sampel yang diambil adalah mereka yang memiliki telepon dan mobil, akibatnya pemilih yang sebagian besar tidak memiliki telepon dan mobil (kelas rendah) tidak terwakili, padahal Rosevelt lebih banyak dipilih oleh masyarakat kelas rendah tersebut. Dari kejadian tersebut ada dua pelajaran yang diperoleh : (1), keakuratan prediktibilitas dari suatu sampel tidak selalu bisa dijamin dengan banyaknya jumlah sampel; (2) agar sampel dapat memprediksi dengan baik populasi, sampel harus mempunyai selengkap mungkin karakteristik populasi (Nan Lin, 1976).
Kedua : Presisi. Kriteria kedua sampel yang baik adalah memiliki tingkat presisi estimasi. Presisi mengacu pada persoalan sedekat mana estimasi kita dengan karakteristik populasi. Contoh : Dari 300 pegawai produksi, diambil sampel 50 orang. Setelah diukur ternyata rata-rata perhari, setiap orang menghasilkan 50 potong produk “X”. Namun berdasarkan laporan harian, pegawai bisa menghasilkan produk “X” per harinya rata-rata 58 unit. Artinya di antara laporan harian yang dihitung berdasarkan populasi dengan hasil penelitian yang dihasilkan dari sampel, terdapat perbedaan 8 unit. Makin kecil tingkat perbedaan di antara rata-rata populasi dengan rata-rata sampel, maka makin tinggi tingkat presisi sampel tersebut.
Belum pernah ada sampel yang bisa mewakili karakteristik populasi sepenuhnya. Oleh karena itu dalam setiap penarikan sampel senantiasa melekat keasalahan-kesalahan, yang dikenal dengan nama “sampling error” Presisi diukur oleh simpangan baku (standard error). Makin kecil perbedaan di antara simpangan baku yang diperoleh dari sampel (S) dengan simpangan baku dari populasi (s), makin tinggi pula tingkat presisinya. Walau tidak selamanya, tingkat presisi mungkin bisa meningkat dengan cara menambahkan jumlah sampel, karena kesalahan mungkin bisa berkurang kalau jumlah sampelnya ditambah ( Kerlinger, 1973 ). Dengan contoh di atas tadi, mungkin saja perbedaan rata-rata di antara populasi dengan sampel bisa lebih sedikit, jika sampel yang ditariknya ditambah. Katakanlah dari 50 menjadi 75.
Di bawah ini digambarkan hubungan antara jumlah sampel dengan tingkat kesalahan seperti yang diuarakan oleh Kerlinger
Ukuran sampel
Ukuran sampel atau jumlah sampel yang diambil menjadi persoalan yang penting manakala jenis penelitian yang akan dilakukan adalah penelitian yang menggunakan analisis kuantitatif. Pada penelitian yang menggunakan analisis kualitatif, ukuran sampel bukan menjadi nomor satu, karena yang dipentingkan alah kekayaan informasi. Walau jumlahnya sedikit tetapi jika kaya akan informasi, maka sampelnya lebih bermanfaat.
Dikaitkan dengan besarnya sampel, selain tingkat kesalahan, ada lagi beberapa faktor lain yang perlu memperoleh pertimbangan yaitu, (1) derajat keseragaman, (2) rencana analisis, (3) biaya, waktu, dan tenaga yang tersedia . (Singarimbun dan Effendy, 1989). Makin tidak seragam sifat atau karakter setiap elemen populasi, makin banyak sampel yang harus diambil. Jika rencana analisisnya mendetail atau rinci maka jumlah sampelnya pun harus banyak. Misalnya di samping ingin mengetahui sikap konsumen terhadap kebijakan perusahaan, peneliti juga bermaksud mengetahui hubungan antara sikap dengan tingkat pendidikan. Agar tujuan ini dapat tercapai maka sampelnya harus terdiri atas berbagai jenjang pendidikan SD, SLTP. SMU, dan seterusnya.. Makin sedikit waktu, biaya , dan tenaga yang dimiliki peneliti, makin sedikit pula sampel yang bisa diperoleh. Perlu dipahami bahwa apapun alasannya, penelitian haruslah dapat dikelola dengan baik (manageable).
Misalnya, jumlah bank yang dijadikan populasi penelitian ada 400 buah. Pertanyaannya adalah, berapa bank yang harus diambil menjadi sampel agar hasilnya mewakili populasi?. 30?, 50? 100? 250?. Jawabnya tidak mudah. Ada yang mengatakan, jika ukuran populasinya di atas 1000, sampel sekitar 10 % sudah cukup, tetapi jika ukuran populasinya sekitar 100, sampelnya paling sedikit 30%, dan kalau ukuran populasinya 30, maka sampelnya harus 100%.
Ada pula yang menuliskan, untuk penelitian deskriptif, sampelnya 10% dari populasi, penelitian korelasional, paling sedikit 30 elemen populasi, penelitian perbandingan kausal, 30 elemen per kelompok, dan untuk penelitian eksperimen 15 elemen per kelompok (Gay dan Diehl, 1992).
Roscoe (1975) dalam Uma Sekaran (1992) memberikan pedoman penentuan jumlah sampel sebagai berikut :
1. Sebaiknya ukuran sampel di antara 30 s/d 500 elemen
2. Jika sampel dipecah lagi ke dalam subsampel (laki/perempuan, SD?SLTP/SMU, dsb), jumlah minimum subsampel harus 30
3. Pada penelitian multivariate (termasuk analisis regresi multivariate) ukuran sampel harus beberapa kali lebih besar (10 kali) dari jumlah variable yang akan dianalisis.
4. Untuk penelitian eksperimen yang sederhana, dengan pengendalian yang ketat, ukuran sampel bisa antara 10 s/d 20 elemen.
Krejcie dan Morgan (1970) dalam Uma Sekaran (1992) membuat daftar yang bisa dipakai untuk menentukan jumlah sampel sebagai berikut (Lihat Tabel)
Populasi (N) | Sampel (n) | Populasi (N) | Sampel (n) | Populasi (N) | Sampel (n) |
10 | 10 | 220 | 140 | 1200 | 291 |
15 | 14 | 230 | 144 | 1300 | 297 |
20 | 19 | 240 | 148 | 1400 | 302 |
25 | 24 | 250 | 152 | 1500 | 306 |
30 | 28 | 260 | 155 | 1600 | 310 |
35 | 32 | 270 | 159 | 1700 | 313 |
40 | 36 | 280 | 162 | 1800 | 317 |
45 | 40 | 290 | 165 | 1900 | 320 |
50 | 44 | 300 | 169 | 2000 | 322 |
55 | 48 | 320 | 175 | 2200 | 327 |
60 | 52 | 340 | 181 | 2400 | 331 |
65 | 56 | 360 | 186 | 2600 | 335 |
70 | 59 | 380 | 191 | 2800 | 338 |
75 | 63 | 400 | 196 | 3000 | 341 |
80 | 66 | 420 | 201 | 3500 | 346 |
85 | 70 | 440 | 205 | 4000 | 351 |
90 | 73 | 460 | 210 | 4500 | 354 |
95 | 76 | 480 | 214 | 5000 | 357 |
100 | 80 | 500 | 217 | 6000 | 361 |
110 | 86 | 550 | 226 | 7000 | 364 |
120 | 92 | 600 | 234 | 8000 | 367 |
130 | 97 | 650 | 242 | 9000 | 368 |
140 | 103 | 700 | 248 | 10000 | 370 |
150 | 108 | 750 | 254 | 15000 | 375 |
160 | 113 | 800 | 260 | 20000 | 377 |
170 | 118 | 850 | 265 | 30000 | 379 |
180 | 123 | 900 | 269 | 40000 | 380 |
190 | 127 | 950 | 274 | 50000 | 381 |
200 | 132 | 1000 | 278 | 75000 | 382 |
210 | 136 | 1100 | 285 | 1000000 | 384 |
Sebagai informasi lainnya, Champion (1981) mengatakan bahwa sebagian besar uji statistik selalu menyertakan rekomendasi ukuran sampel. Dengan kata lain, uji-uji statistik yang ada akan sangat efektif jika diterapkan pada sampel yang jumlahnya 30 s/d 60 atau dari 120 s/d 250. Bahkan jika sampelnya di atas 500, tidak direkomendasikan untuk menerapkan uji statistik. (Penjelasan tentang ini dapat dibaca di Bab 7 dan 8 buku Basic Statistics for Social Research, Second Edition)
0 Response to "APA ITU TEKNIK SAMPLING "
Post a Comment